
Take the Leap: From MCUs to FPGAs

Spend a year with me as I use my

MCU and software background as a

base from which to explore the

strange land of programmable logic

Image from
1bitsquared.com

Image from
tinyFPGA.com

Field Programmable Gate Array –

Fear

Programmable

Gate

Arrays

Key Take Aways

• Why you might want to use an FPGA

• Exposure to some of the most common traps
that trip up FPGA beginners

• First soldering iron burn on finger: 1975
• Digital electronics 30 years ago
• Software off and on for a long time

• The ‘80s were a weird: I wrote
software for spare change

• MCUs for a decade +
• Picked up robots in the 21st century

because they’re modern

Where I came from

Me

My Role in All of This

• Ever asked a question where the answer was a smug
“RTFM”?

• I spent a year asking those dumb questions so, in
theory, you won’t have to. You’re welcome to
anyway, but it won’t be mandatory.

Bad clip-art that came with
this presentation software
representing me

Take the Leap: from MCUs to FPGAs.
But watch out for alligators
Duane Benson

Image from
1bitsquared.com

Image from
tinyFPGA.com

Why FPGAs?
• Extreme customization
• Parallel work

Motor drivers

w
h

ee
l

w
h

ee
l

Motion
control

and
sensor
fusion

Vision
Comm
Display

FPGA
will go
here

The robot
that started
my FPGA
journey

Why FPGAs?
• And this: Parallel work

I2C I2C I2C I2C I2C I2C

All loaded into the FPGA and processed at the same time.

FPGAs:
• Not as big a jump as I had thought

• Not as expensive as I had thought

• There are quite a number of inexpensive and
(relatively) easy to use tools available

But – There are a few dangerous
traps – especially if you come with
an MCU mindset

• Use an IDE

• Multiple files in the
development set

• Multiple language options

• You code, then implement

• Often familiar syntax

• No instant start at power-up

• The FPGA isn’t “running”
your code*

• You are designing a piece of
hardware

• You must wire up the chip
pins to the innards

• Most pins are not-mapped to
a function

What’s the Same vs. Not the Same

Time to Dig In

• What do you need?

• Digital logic knowledge

• Programming experience will both help and
hurt

• Familiarity with IDEs

• MCU programming experience may be more
relevant than OS or applications programming

Development environment
• Lattice, Xilinx, Altera/Intel all have their own IDEs

• That’s nice of them

• Open source toolchains
are around now too

Pick Your Board

• Now What?

• How do you “program” these things?

• Some will say: “Technically, it’s not a program.” But
what is it? How do you make an FPGA do something?

Order of Work

Empty hardware

Configured and
working thing

2. Code in your HDL

4. Synthesize

3. Simulate

5. Crunch to bit file

6. Load bit file to device

1. Define “constraints” in UCF/LPF

Three primary file Types

UCF/LPF file
Verilog code

file

Module
code file

Module
code file

Module
code file

Module
code file

Module
code file

Module
code file

Defines pins,
port names and
locations

Core of your HDL
code

Library/Code
module snippets
(includes)

UCF/LPF: Mapping/defining pins

User Constraints File / logical Preferences File, or equivalent

Anatomy Of The UCF/LPF

My labels Physical chip pins

User Constraints File / logical Preferences File, or equivalent

UCF/LPF: Mapping/defining pins

User Constraints File / logical Preferences File, or equivalent

My label for use in HDL Physical chip pin

First – Define Connections

Switch on PCB: SW4

SW4 wired to chip pin V4
with PCB trace

Write UCF to map chip pins to labels:
 NET USER_RESET LOC = V4

“NET” and “LOC” are reserved words,
“V4” is the chip pin,
“USER_RESET” is my label

HDL code will later reference the label:
 Input USER_RESET

1

2

3

4

SW4

Anatomy Of a Verilog File

Module / Ports
(connections to the outside world)

Declarations
(Internal use only)

Clock triggered circuitry

Wire / Register / Assign

Clock triggered circuitry

Declarations
(Internal use only)

Module / Ports
(connections to the outside world)

Wire / Register / Assign
Blinding flash of the obvious here: Wires just go between two things. Obvious,
yes. But it needs to be stated in the “new to FPGA” world.

It’s not a register like a hardware register in your MCU. It stores value or state
logically to combine with another register value – more like a RAM location or
variable, although some people don’t like that comparison.

wire wire

“Assign” creates a permanent connection

Wire / Register / Assign
A few important rules
assign awire = aregister_or_awire
Only a “wire” can be on the left of the = sign in an assign statement.

An assign cannot be used within an always block

“assign” means to wire something up at configuration time.

always @(posedge clk) begin

areg = areg or areg <= areg A wire can’t be on the left
areg = awire or areg <= awire when inside of an always block

Both wires and registers can be on the right side anywhere

It’s not an array, it’s a ribbon cable – sort of
NET LED<0> LOC = P4 | IOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
NET LED<1> LOC = L6 | IOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
NET LED<2> LOC = F5 | IOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
NET LED<3> LOC = C2 | IOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;

output wire [5:0] LED

 …
reg [15:0] ledCount = 16’hFFFF;

always @(posedge clk) begin

 ledCount <= ledCount + 1;
End

assign LED[3:0] = ledCount [15:12];

In the UCF:

In Verilog

Two-types of Logic in your FPGA

Clocked (triggered) vs. Combinatorial (AKA combinational)

Clocked logic: Always block

Clock triggered circuitry

Parallel Activity with Always Blocks

You can have many on the same clock or on different* clocks

always @(posedge clk_1) begin

 flashValueR = ~flashValueR;
end

always @(posedge clk_2) begin

 flashValueG = ~flashValueG;
end

always @(posedge clk_3) begin

 flashValueB = ~flashValueB;
end

always @(posedge clk_1) begin

 flashValueR = ~flashValueR;
end

always @(posedge clk_1) begin

 flashValueG = ~flashValueG;
end

always @(posedge clk_1) begin

 flashValueB = ~flashValueB;
end

Common clock Independent clocks

Combanatorial Logic: assign statement

Connected, even outside the “loop”
Results happen instantly (less propagation delay) without need for a clock

Combinatorial: Connected at start

main() {
int flashValue = 0;

 while (1) {
 if (flashValue == 0) {
 flashValue = 1;
 } else {
 flashValue = 0;
 }
 }

 PORTA.0 = flashValue;
}

module flashStuff
 (
 input clk,
 output flash

);

 reg flashValue;

 always @(posedge clk) begin

 flashValue = ~flashValue;
 end

 assign flash = flashValue;

endmodule

 Nothing happens Hey – It flashes! ☺ ☹

MCU world: FPGA world:

MCU vs. FPGA: Parallel vs. serial

main() {
 - some C code

 funct_1();

 funct_2();

 funct_3();

 - some C code
}

module flashStuff
 - some Verilog stuff

 always @(posedge clk) begin

 Some stuff 1;
 end

 always @(posedge clk) begin

 Some stuff 2;
 end

 always @(posedge clk) begin

 Some stuff 3;
 end

 - some Verilog stuff
endmodule

M
C

U
 w

o
rl

d
:

In
 s

eq
u

en
ce

FP
G

A
 w

o
rl

d
:

Si
m

u
lt

an
eo

u
sl

y

“Registering”

Brain thinks:
“Registering”… Maybe like registering a Windows .dll or something…

input Logic circuit
Verilog

wire

input register Logic circuit Verilog

wire

Verilog

wire

Major case of overthinking.
“Registering” just means put the signal in a register

Experts talked about “registering” a signal

Not registered:

Blocking / Non-blocking
 = blocking (better described as “immediate” – real time game)

<= non-blocking

Non-blocking: “led_count” will only be
accurate after clock cycle

(clock based – like a turn based game. You do stuff and
read it all at the end of the turn)

Blocking: “GATE_OUT_Y” will always,
immediately reflect the reults of
“GATE_OUT_A” AND “GATE_OUT_B”

Metastability - Warning
• Clock sampling too soon

• Transition from 0 to 1 or
1 to 0 not complete yet

• Results in an unknown
output

• Often caused by
asynchronous inputs or
using multiple clock
domains

Metastability - Warning
• From the MCU world, think about key bounce, but

worse and easier to solve (not an exact analogy, but close

enough)

• Better to use once clock source

• Mitigated by using two or three flip flops in series

Anatomy of Libraries & Modules

• VHDL has standard and user developed
libraries

• Verilog code can be separated out as a
module

• They look like typical
software libraries and
functions

Simple Example

Simple Example

Logic Symbol

The module In Verilog:

Used in another Verilog file

Rather than “call”, the
term “Instantiate” is used.

Not the Same as Calling a Function

function()

main() {
 - some C code

 function();

 function();

 function();

 - some C code
}

Calls the same physical code each time
(unless multi-threaded, but that’s not the analogy)

In the MCU software world

Not the Same as Calling a Function

template

Uses the same template when
synthesizing from the HDL code

In FPGA world

Flip flop

Flip flop

Flip flop

Creates independent flip flop module in
three different physical locations

Conclusions
• I’ve only touched the surface

• The barriers to FPGA entry have dropped

• A lot of options

• A lot of opportunities for confusion and MCU-derived traps

• But, they are amazing tools once you get to know them.

Download this presentation at: positiveedge.today/teardown-2023-mcu-to-fpga

