Posjtive Edge LLC®

Take the Leap: From MCUs to FPGAs’

Spend a year with me as | use my
MCU and software background as a
base from which to explore the
strange land of programmable logic

Image from
tinyFPGA.com

Image from
lbitsquared.com

Positive Edge LLC
with

Field Programmable Gate Array —

o
% Fear

Programmable

Gate l
Arrays

Pos'ltive Edge LLC®
Go with the positive edge

Key Take Aways

 Why you might want to use an FPGA

e Exposure to some of the most common traps
that trip up FPGA beginners

Where | came from

* First soldering iron burn on finger: 1975
e Digital electronics 30 years ago

» Software off and on for a long time

 The ‘80s were a weird: | wrote
software for spare change

e MCUs for a decade +

* Picked up robots in the 215t century
because they’'re modern

Pos'ltive Edge LLC®
Go with the positive edge

My Role in All of This

* Ever asked a question where the answer was a smug
“RTFM”?

* | spent a year asking those dumb questions so, in
theory, you won’t have to. You’re welcome to

anyway, but it won’t be mandatory. =

Bad clip-art that came with

00
this presentation software i h‘
representing me

Positive Edge LLC®

Go with the positive edge

Take the Leap: from MCUs to FPGA:s.

But watch out for alligators
Duane Benson

library ieee;

2 use ieee.std logic_1164.all;
3 use ieee.std logic unsigned.all;
4 Library UNISIM;
5 use UNISIM.vcomponents.all;
7 entity ledflash is
B8 E Port (CLEK_66MHZ : in
S USER_RESET : in
10 [LED : out STD_LOGIC_VECTCR (downto ¥y :
11 “end ledflash;
12
13 Harchitecture Behavioral of ledflash i
14 =ignal <clk : std 1o H Image from
15 signal <clk enable : std lo H
16 signal led count : std_logic wector(downto 0) ; tlnyFPGA.com
17 Hbkegin
1 clk _enable <= n USER_RESET;
1 BUFGCEiinSt : BUFGCE
20 = port map (
21 o => clk,
22 CE => clk_enable,
23 I
Image from o Yi
1bitsquared.com 2 E process (clk)
27 begin
28 = if clk="""' and clk'event then
29 led count <= led count + H

end if;
end process;
LED <= led count(Z¢ downto)
end Behavioral:;

>

(X}

Why FPGAs?

Pos'ltive Edge LLC®
Go with the positive edge

e Extreme customization

e Parallel work

The robot
that started
my FPGA
journey

Pos'ltive Edge LLC®
Go with the positive edge

Why FPGASs?

 And this: Parallel work

All loaded into the FPGA and processed at the same time.

Pos'ltive Edge LLC®
Go with the positive edge

FPGAS:

* Not as big a jump as | had thought
* Not as expensive as | had thought

* There are quite a number of inexpensive and
(relatively) easy to use tools available

But — There are a few dangerous
traps — especially if you come with
an MCU mindset

What’s the Same vs.

Pos'ltive Edge LLC®
Go with the positive edge

Not the Same

e Use an IDE

* Multiple files in the
development set

 Multiple language options
* You code, then implement
e Often familiar syntax

No instant start at power-up

The FPGA isn’t “running”
your code*

You are designing a piece of
hardware

You must wire up the chip
pins to the innards

Most pins are not-mapped to
a function

Pos'ltive Edge LLC®
Go with the positive edge

Time to Dig In

 What do you need?

* Digital logic knowledge

* Programming experience will both help and
nurt

* Familiarity with IDEs

e MCU programming experience may be more
relevant than OS or applications programming

Development environment

Posjtive Edge LLC®

Go with the positive edge

o Lattice, Xilinx, Altera/Intel all have their own IDEs

e That’s nice of them

 Open source toolchains
are around now too

File Edit View Project Source Process Tools Window Layout B EE
=4 BN 3 X |[o | »i® < =|: A R2|: > €9
Design ~O& x| = 1 | =
View: @ &} Implementation © [Simulation = 2 2222002222007 V2244
Hierarchy = Z
] ledflash_ISE_ver = s
= €3 xc6shO-3csg324 P
F& ledflash_ISE_ver (ledflash_ISE_verv) 7
°
A4 10
| 22
12
s 13 r
>6 14 3
1s
16
€2 No Processes Running i
Processes: ledflash_ISE_ver i
Design Summary/Reports D e FIIIIIIIIIIII S
Do B e
N o 22 input CLK_66MHZ,
gt L 23 input USER_RESET,
Sop Mo Soan 24 output [5:0] LED
Generate Programming File ¢
25):
Configure Target Device S0
Analyze Design Using ChipScope 5=
28 endmodule 4
< Lm »
[start | 8 pesign [[[3 Fies [tibraries | ledflash_ISE_ver.v 3 Design Summary
Warnings =3
»
@ Errors | 8\ warnings | & Find in Files Results
Ln1Coll Verilog

Pos'ltive Edge LLC®
Go with the positive edge

Pick Your Board

e Now What?

[

* How do you “program” these things?

 Some will say: “Technically, it’s not a program.” But
what is it? How do you make an FPGA do something?

&} waveform - DEV:0 MyDevice0 (XC6SLX9) UNIT:0 MylLAO (ILA) =55
1] 640 1280 1920 2560 3200 3840 4480 5120 5760 6400 7040 7680 8320 8960 9600 10240 10880 11520 12160 128(

LIS L | T ! I I I 1 1 | I | ! | | | |
/spi_clk 1 1] [| [|] [] | I [] | I | | l [] |] | 1 [[
/SCLKioc_ OBUF o 0 [] [] [] |] [] [1 |] |]
/MOSI 0 0 i I e | |) | R |
/LED2_OBUF 1 1 1 |] N || =
/SS 1 1 | I —
Ll [l > af»af I

Waveform captured Dec 11, 2012 12:29:05 AM X: of<] »] o

Order of Work e
1. Define “constraints” in UCF/LPF
2. Code in your HDL
3. Simulate
4. Synthesize

5. Crunch to bit file
6. Load bit file to device

Configured and
Empty hardware working thing

Pos'ltive Edge LLC®
Go with the positive edge

Three primary file Types

Verilog code

file Module

code file

Defines pins, Core of your HDL
port names and code
locations

Library/Code
module snippets
(includes)

W by =

(a5 =

-]

[{alee]

b

fa

UCF/LPF: Mapping/defining pins™

NET "CLK &6MHZ" LoC = "K15" | TOSTANDARD = LVCMOS33;

NET LED<O> LOC = P4 | TOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
NET LED<1> LoC = L6 | IOSTANDARD = LVCMOsS18 | DRIVE = 8 | SLEW = SLOW :
NET LED<Z> LOC = F&5 | TOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
NET LED<3> LoC = C2 | IOSTANDARD = LVCMOsS18 | DRIVE = 8 | SLEW = SLOW :
NET USER ERESET LOoC = V4 | IOSTANDARD = LVCMOS33 | PULLDOWN: # "USER_RESET"™

CONFIG VCCAUX = "3.3" :

User Constraints File / logical Preferences File, or equivalent

Anatomy Of The UCF/LPF Posfive Edgs LLC

1 NET | TOSTANDARD = LVCMOS33;

2

3 NET IOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;

4 NET = IOSTANDARD = LVCMOsS18 | DRIVE = 8 | SLEW = SLOW :

5 NET = IOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;

& NET IOSTANDARD = LVCMOsS18 | DRIVE = 8 | SLEW = SLOW :
NET = IOSTANDARD = LVCMOS33 | PULLDOWN: # "USER_RESET"™

O W w0

=

My labels Physical chip pins

User Constraints File / logical Preferences File, or equivalent

UCF/LPF: Mapping/defining pins™

1 NET "CLK GoMHZ" LoC = "K15" | TOSTANDARD = LVCMOS33;

2

3 NET LED<O0O> LOC = P4 | TOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
4 NET LED<1> LoC = L6 | IOSTANDARD = LVCMOsS18 | DRIVE = 8 | SLEW = SLOW :
5 NET LED<Z2> LOC = F&5 | TOSTANDARD = LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
& NET LED<3> LoC = C2 | IOSTANDARD = LVCMOsS18 | DRIVE = 8 | SLEW = SLOW :

10 CONFIG CCAUX = "3.3"

My label for use in HDL Physical chip pin

User Constraints File / logical Preferences File, or equivalent

First — Define Connections

NET USER_RESET LOC = V4 | IOSTANDARD = LVCMOS33 | PULLDOWN:; # "USER_RESET"

1 Switch on PCB: SW4

Write UCF to map chip pins to labels:
NET USER _RESET LOC=V4

“NET” and “LOC” are reserved words,
“V4” s the chip pin,
“USER _RESET” is my label

2 SW4 wired to chip pin V4

with PCB trace
s P HDL code will later reference the label:
B : Input USER_RESET
USER_RESET __ 3 | ot i

Pos'ltive Edge LLC®
Go with the positive edge

Anatomy Of a Verilog File

1 “timescale 1 ns / 1 ps
2
3 module ledflash
4 (
5 input wire CLK 66MHZ,
o input wire USER_ RESET, MOdUIE / POrtS
7 output wire [5:0] LED . .
.) P (connections to the outside world)
10 wire clk; .
11 wire clk enable; DECIaratlons
12
13 assign clk enable = ~USER RESET; (Internal use OﬂlY)
14
15 BUFGCE BG (-O(clk), .CE(clk enable), .I(CLK 66MHZ)) ;
16 reg [26:0] led count:
17
18 always @ (posedge clk)

9 led count <= led count + 1; CIOCk triggerEd CirCUitry

.
21 assign LED[5:0] = led count[Z26:21];
22 endmodule

Pos'ltive Edge LLC®
Go with the positive edge

Wire / Register / Assign

1 “timescale 1 ns / 1 ps
2
= module ledflash
4 (
= input ire CLK 66MHZ,
o input wire USER_ RESET, MOdUIE / POrtS
7 t t i 5:0] LED . .
. Nt (connections to the outside world)
£
10 wire clk;
1} wire clk enable; } DECIaratlons
£
13 lkenable — ~USER RESET; (Internal use only)
14
5 E BG (.O0(clk), .CE(clk enable), .I(CLK 66MHZ)) ;
16 @ [26:0] led count:;
17
18 always @ (posedge clk) o ° °
15 led count <= led count + i; Clock triggered circuitry
20
21 assign LED[5:0] = led count[26:21]7;
22 endmodule

Wire / Register / Assign

Blinding flash of the obvious here: Wires just go between two things. Obvious,
yes. But it needs to be stated in the “new to FPGA” world.

It’s not a register like a hardware register in your MCU. It stores value or state
logically to combine with another register value — more like a RAM location or

variable, although some people don’t like that comparison.

endState

“Assign” creates a permanent connection

Pos'ltive Edge LLC®
Go with the positive edge

Wire / Register / Assign

A few important rules

assign awire = aregister_or_awire
Only a “wire” can be on the left of the = sign in an assign statement.

An assign cannot be used within an always block
“assign” means to wire something up at configuration time.

always @(posedge clk) begin
areg =areg or areg<=areg A wire can’t be on the left

areg = awire or areg<=awire when inside of an always block

Both wires and registers can be on the right side anywhere

Posjtive Edge LLC®

Go with the positive edge

It’s not an array, it’s a ribbon cable — sort of

NET LED<O> LOC=P4 | IOSTANDARD =LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;

. 3 NET LED<1> LOC=1L6 | IOSTANDARD =LVCMOS18 | DRIVE =8 | SLEW = SLOW ;

In the UCF ¢ NET LED<2> LOC=F5 | IOSTANDARD =LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;
NET LED<3> LOC=C2 | IOSTANDARD =LVCMOS18 | DRIVE = 8 | SLEW = SLOW ;

output wire[5:0] LED ¢ In Verilog 'ﬁ‘.(\e (\‘,
reg [15:0] ledCount = 16’hFFFF; 6 6(“0
o‘ l\e
always @(posedge clk) begin (e’b s\?} 0
ledCount <= ledCount + 1; c § ¢ eﬁ’o ﬂ\fo
End \\0\) o Q:‘
W o™
Q@ .\(e

assign LED[3:0] = ledCount [15:12];

Pos'ltive Edge LLC®
Go with the positive edge

Two-types of Logic in your FPGA

Clocked (triggered) vs. Combinatorial (AKA combinational)

Pos'ltive Edge LLC®
Go with the positive edge

Clocked Ioglc Always block

1 “timescale ns Ps
2
3 module ledflash
4 (
5 input wire CLK 66MHZ,
G input wire USER_ RESET,
7 output wire [5:0] LED
8) 7
10 wire clk;
11 wire clk enable;
12
13 assign clk enable = ~USER RESET;
14
15 BUFGCE BG (.0O(clk), .CE(clk enable), .I(CLK 66MHZ)) ;
16 reg L :01 led count;
17
8 always @ (posedge clk)

led count <= led count + 1 } Clock triggered circuitry

2
21 assign LED[5:0] = led count][: 1:
22 endmodule

Parallel Activity with Always Blocks

Pos'ltive Edge LLC®
Go with the positive edge

Common clock

always @(posedge clk_1) begin
flashValueR = ~flashValueR;
end

always @(posedge clk_1) begin
flashValueG = ~flashValueG;
end

always @(posedge clk_1) begin
flashValueB = ~flashValueB;
end

Independent clocks

always @(posedge clk_1) begin
flashValueR = ~flashValueR;
end

always @(posedge clk_2) begin
flashValueG = ~flashValueG;
end

always @(posedge clk_3) begin
flashValueB = ~flashValueB;
end

You can have many on the same clock or on different™ clocks

Pos'ltive Edge LLC®
Go with the positive edge

Combanatorial Logic: assign statement

--.»assign clk enable = ~USER RESET;

BUFGCE BG (.0(clk), .CE(clk _enable), .I(CLK 66MHZ)) ;
reg L :01 led count;

always @ (posedge clk)
led count <= led count +

--.>assign LED[5:0] = led count][: 1;
--»'assign GHTE_OUT_Y = GHTE_IN_H & GHTE_IN_B;

endmodule

Connected, even outside the “loop”
Results happen instantly (less propagation delay) without need for a clock

Combinatorial: Connected at start

Pos'ltive Edge LLC®
Go with the positive edge

MCU world: FPGA world:
module flashStuff
main() { (
int flashValue = 0; input clk,
[hile (1) { \ output flash
while);
if (flashValue == 0) {
flashValue = 1; reg flashValue;
} else { \ OQ
flashValue = 0; \O \ always @(posedge clk) begin
} flashValue = ~flashValue;
\ } / end
PORTA.O = flashValue; ien flash = flashValue:
even ‘ assign flas ;
} connected,

{
outside the loop” endmodule

Nothing happens & Hey — It flashes! @

Positive Edge LLC®

MCU vs. FPGA: Parallel vs. serial

module flashStuff
- some Verilog stuff

main() { always @(posedge clk) begin
- some C code Some stuff 1; >
W end T 35
funct_1(); g O S 8
g v always @(posedge clk) begin = S
funct_2(); o Some stuff 2; g~
o o O S
QO wn end & c
funct_3(); = £)
always @(posedge clk) begin
- some C code Some stuff 3;
} end

- some Verilog stuff
endmodule

Pos'ltive Edge LLC®
Go with the positive edge

“Registering”

Experts talked about “registering” a signal

Brain thinks:
“Registering”... Maybe like registering a Windows .dll or something...

Verilog

Not registered: input — Logic circuit
input Verilog register verllog ™| ogic circuit
P wire 8 wire g

Major case of overthinking.
“Registering” just means put the signal in a register

Po§ﬁveEdgeLLC®

Blocking / Non-blocking oSS

bIocking (better described as “immediate” — real time game)
<= non-blocking (clock based — like a turn based game. You do stuff and
read it all at the end of the turn)

Blocking: “GATE_OUT_Y” will always,
immediately reflect the reults of
“GATE_OUT_A” AND “GATE_OUT_B”

assign GATE OUT Y = GATE IN A & GATE IN B;

always @ (posedge clk) . .
led count <= led count + 1: Non-blocking: “led_count” will only be

accurate after clock cycle

Pos'ltive Edge LLC®
Go with the positive edge

Metastability - Warning

Clock sampling too soon ¢)—p ——mp d=p a“"“

Transition from O to 1 or cm—p
1 to 0 not complete yet

ClK2

Results in an unknown

output ‘WJ_I_:ﬁl_Il,IIIII|||||
| |

Often caused by oo 4‘?1 |

asynchronous inputs or » 7

using multiple clock oot A

domains bk | sk s

Pos'ltive Edge LLC®
Go with the positive edge

Metastability - Warning

* From the MCU world, think about key bounce, but

worse and easier to solve (not an exact analogy, but close
enough)

e Better to use once clock source
* Mitigated by using two or three flip flops in series

ff1q_to_ff2d

Anatomy of Libraries & Module

Pos'ltive Edge LLC®
Go with the positive edge

 VHDL has standard and user developed

libraries

* Verilog code can be separated out as a

module

* They look like typical
software libraries and
functions

library ITEEE;
nunse IZZZ.BID_LGEIZ_IIE%.HLL;
use IEEE.numeric std.all;

Library UNISIM;
use UNISIM.vcomponents.all:;

PosltiveEdgeLLc®
Go with the positive edge

Simple Example

GATE_IN_A

INPLO] GATE_OUT_Y

(Ul
—

AND1

INPL1]

GATE_IN_B

AND_GATE:1

GATE_IN_B

GATE_OUT_Y |mp GATE _OUT_Y1

Pos'ltive Edge LLC®
Go with the positive edge

Simple Example

GATE_IN_A

GATE_OUT_Y

INPLO] Iﬁ /
TS \ P AND1 Logic Symbol

GATE_IN_B

Used in another Verilog file
Rather than “call”, the

The module In Verilog: . .
5 term “Instantiate” is used.

Imodule AND GATE (

input GATE IN A,

input GATE IN B,

output GATE OUT Y

) ;

assign GATE OUT Y = GATE IN A & GATE IN B;
endmodule

Pos'ltive Edge LLC®
Go with the positive edge

Not the Same as Calling a Function

In the MCU software world

main() {
- some C code

function();

function(); =2 | function()

/

function();

- some C code

}

Calls the same physical code each time
(unless multi-threaded, but that’s not the analogy)

_sgve Edge LLC®
Go with the positive edge

Not the Same as Calling a Functio

Uses the same template when In FPGA world
synthesizing from the HDL code

// Instantiate flip flop

flipflops input 0 (

template | &= .d_in(signal in[01),

oy .clk inA(clock sel),
.g out (status[0]1)

Flip flop) ;

flipflops input 1 (
.d in(signal in[11]1),
.clk in(clock sel),
F“pﬂop .g out(status[1])
) ;

thﬂop ipflops input 2 (
.d in(signal in[Z]1),
.clk in{(clock se<el1),

Creates independent flip flop module in .q_out (status[21)
three different physical locations)/

Pos'ltive Edge LLC®
Go with the positive edge

Conclusions

* |’'ve only touched the surface
* The barriers to FPGA entry have dropped

* Alot of options
* Alot of opportunities for confusion and MCU-derived traps

* But, they are amazing tools once you get to know them.

I Download this presentation at: positiveedge.today/teardown-2023-mcu-to-fpga I

